NREL's Integrating PV in Distributed Grids Workshop: Solutions and Technologies

A View from Hawaii

Thursday, October 22, 2015 Ken Fong, P.E.

Manager, Transmission & Distribution Planning
Hawaiian Electric Company

Our Vision

Cost-effective clean energy

- Achieve more than 65% Renewable Portfolio Standard (RPS) by 2030
- Meet Hawaii's goal of 100% RPS by 2045
- 20% bill reduction

Growing and equitable rooftop solar

- Accommodate growing rooftop solar
- Equitable for <u>all</u> customers

Modern grid

- Smart infrastructure
- Two-way flow of electricity and information
- Energy storage

Innovative energy solutions and services

• Community-based renewables, electrification of transportation, TOU, DR, microgrids, etc.

Hawaiian Electric: 3 Electric Utilities, 5 **Separate Grids**

Serves islands of Maui, Molokai, and Lanai

Customers: 68,000

Generating capability: 284 MW

Peak Load (Maui): 190 MW

Kaua'i Island Utility Cooperative 7.3%*

Hawaiian Electric 13.0%*

Maui Electric 12.0%

Hawai'i Electric Light 10.0%

Hawaiian Electric

Serves island of Oahu

Customers: 297,000

Generating capability: 1,756 MW

Peak Load: 1,150 MW

Percentage of Customers with PV

* As of 06/30/15

** As of 12/31/13

National data courtesy of Solar Electric Power Association

Hawaii Electric Light

Serves island of Hawaii

Customers: 81,000

Generating capability: 293 MW

Peak Load: 190 MW

Hawaiian Electric Has a Diverse Mix of Renewable Energy Resources, Including Distributed Solar

Utility-scale
Photovoltaic and
Solar Thermal, 2%

Hydro, 3%

We Have Experienced an Exponential Growth in Photovoltaics on Our System

PV Systems and Inverters are Becoming a Growing Part of Our Distribution System

Distribution Wood Poles*

Company	Count
несо	59,000
HELCO	52,000
МЕСО	30,000
Total	141,000

Distribution
Transformers*

Company	Count
несо	32,000
HELCO	24,000
МЕСО	12,000
Total	68,000

PV Systems*

Company	Count	kW
HECO	38,000	294,000
HELCO	8,000	61,000
MECO	8,000	63,000
Total	54,000	418,000

Variable Generation is Reducing Conventional

At The System Level, Reliability Levels are Lower Than in the Past

Today a large generator trip or system fault during peak PV periods results in:

- Loss of system inertia due to reduction in rotating generation
- Loss of "legacy" PV which acts like a secondary generation loss
- Reduced effectiveness of UFLS due to rooftop PV
- Potential of massive load shedding (3-4 of 5 blocks of UFLS)
- Faster rate of change of frequency

Battery Energy Storage System for Fast Frequency Response

BESS Helps with Transmission Line Fault Event (Overfrequency)

Evolution of PV Integration for Hawaiian Electric

- Control
- Visibility
- GridManagement

250% of DML

Transient Overvoltage

(2014)

Hosting Capacity

Advanced Inverters

(2015)

120% of DML
Representative
Studies
15% of (2013)
Circuit Peak
Load

(Pre-2013)

50%, 75%, 100%,

Hawai`i is Leading the Nation in Implementing Solutions for the Integration of Distributed Solar

Distribution Level

- Steady State
 - Thermal Capacity Over Load
 - Over Voltage issues
 - Primary
 - Secondary
 - Imbalance across phases
 - Protection
- Dynamic
 - Voltage Flicker
 - Voltage Regulation Impacts
 - Islanding
 - Load Rejection Over Voltage
 - Ground Fault Over Voltage

System Level

- Steady state
- Transient stability

Testing at NREL Provided an Opportunity to Perform Lab Tests in a Real World Environment

At the Distribution Level, Circuit "Hosting Capacity" Method Used to Proactively Plan for and

Heat Map
Illustrative of
Overvoltages
Caused by High
Amounts of Reverse
Flow

We Are Working Through Rooftop PV Challenges

Cannot be Measured

Rooftop PV output can only be estimated

Uncontrollable

Cannot be turned on or curtailed

"Legacy" PV

- ~60 MW of PV generation trips offline at 59.3 Hz
- ~175 MW of PV generation trips offline at 60.5 Hz

Underfrequency Load Shed Schemes

Decreases effectiveness of UFLS

Hawaiian Electric Company's Technical Plan

- System Level Limit
 System level screens for each unique island grid balancing
 system level reliability, safety, and cost-effective service to
 all customers
- Hosting Capacity
 Circuit level hosting capacities unique to each circuit to
 enable efficient interconnection process
- Advanced Inverters
 Early implementation and establishment of advanced
 inverter standards (fixed power factor, volt-watt,
 frequency-watt, communications, etc.) to cost-effectively
 and safely integrate distributed energy resources

Ride-through Standards Were Established to Assist During System Disturbances

Low/High Frequency Ride-Through

Inverter will ride-through system contingencies (i.e. loss of large load or generating unit)

Low/High Voltage Ride-Through

Inverter will ride-through system or circuit disturbances (i.e. short circuit faults)

Adoption of Advanced Inverter Voltage Functions to Mitigate Voltage Issues

Volt-Watt

Mitigates secondary high voltage by reducing real power as a function of voltage.

Dynamic Volt-Var

Fixed Power Factor

Provides voltage support; mitigate high voltages. May increase system losses.

Advanced Inverters for System Support

Frequency-Watt

May assist in over-frequency due to of loss of load/excess energy

Soft-Start

Gradually raises the inverter power output to coordinate with the ramping capabilities of the bulk generating system. Mitigates frequency swings during system restoration.

Remote Connect/Disconnect

Utility sends command to inverter to disconnect or reconnect system. To be used during system emergencies or system restoration.

Communications

Remote Configurability

Measurement/Visibility

Source: EPRI Report 3002001246

Fixed Power Factor Can Mitigate Localized High Voltage and Reduce Voltage Fluctuations

The Next Challenge: Real World Overvoltage Events Demonstrate that DER Systems Can Cause Overvoltage

Advanced Inverters Used to Manage Overvoltage Events

Lessons Learned

- Rooftop solar is a customer choice
- Consider DER as a grid asset how do you extract the greatest value?
- It is an exercise in volume
- Get ahead of the curve

Hawaiian Electric Maui Electric Hawaiʻi Electric Light

